EE 505
Lecture 10

« Statistical Circuit Modeling



Review from previous lecture:

Summary of Results
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Review from previous lecture:

Consider a resistor of width W and length L B
o2 — [LT e Trer 52 o L A=WeL | L
R W W ° L REF W3 -
Note oy is dependent on resistance value W
Consider now the normalized resistance = — '_V
L N
where R, =R, W l B,

It follows that
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The term on the right in [ ] is the ratio of two process g_arameters so define

the process parameter Ai by the expression Ay F?EF
oN

Ag is more convenient to use than both oger and Ry

Thus the normalized resistance is given by the expression
A2 AZ
02 _ R __ R
. = —
R, WL A
Note ok /gy IS NOt dependent on resistance value

Will term AR the “Pelgrom parameter” (though Pelgrom only presented results for MOS devices)



Review from previous lecture:

Amplifier Gain Accuracy
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Amp“ﬁer Gain Accuracy Review from previous lecture:

Many different ways to achieve a given gain with a given resistor area

R
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Which will have the best yield?



y String DAC Statistical Performance
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* |[NL is of considerable interest
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« INL=Max(|INL,]), O0<k<N-1

VO3

R, « INL is difficult to characterize analytically so will focus on INL,
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VOl

Assume resistors are uncorrelated RVs but identically distributed, typically zero mean Gaussian
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String DAC Statistical Performance
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String DAC Statistical Performance
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If we do a Taylor’s series expansion of the reciprocal of the
denominator and eliminate second-order and higher terms it follows
that

Ly ( k £ 3 }{ .y }
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Note that INK, is a zero-mean multivariate Gaussian distribution



String DAC Statistical Performance

Since the resistors are identically distributed and the coefficients are not a
function of the index |, it follows that

5 5 k k 2 N-1 k 2
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Since the index in the sum does not appear in the arguments, this simplifies to

Opir =0 »r J(N_l_k)k 1<k<N-1
T N-1

RN OM

Note there is a nice closed-form expression for the INL, for a string DAC !!



String DAC Statistical Performance

INL, assumes a maximum variance at mid-code
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String DAC Statistical Performance

How about statistics for the INL?
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are Vevy Comp [ cated and closed form solutlons do not exist

INL is not zero-mean and not Gaussian



Current Steering DAC Statistical Characterization

Unary weighted
Vrer | |o=0<b I Cb I2 @ . o .IN_1<b

XN Binary to ’ R
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n Decoder N ‘ ‘
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Assume unary current source array and define 1,=0

OUT = RZ[ 1<ks<N
For notational convenlence will normalize by —R to obtain
lourx (K) = Z/ 1<k=<N

Assume current sources are random variables with identical distributions
IJ—INOM IJ IRj ocN(O,csI)



Current Steering DAC Statistical Characterization
Unary weighted
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Current Steering DAC Statistical Characterization
Unary weighted
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It can be shown that the nominal part cancels, thus
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This is a sum of uncorrelated random variables




Current Steering DAC Statistical Characterization
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Current Steering DAC Statistical Characterization

Unary weighted
As for the string DAC, the maximum INL, o e Bl =l =
: e Ll ]
occurs near mid-code at about k=N/2 thus L

I.=I,+1L,.

And, as for the string DAC, the INL is an order statistic and thus a
closed-form solution does not exist



Current Steering DAC Statistical Characterization
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Binary Weighted
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The structure looks about the same as for the unary structure but now the

current sources are binary weighted

OUT = szl b=<bn,bn 1....b1>

Define the decimal equwalent of b, k, , by

k,=> b2/
j=1

For notational convenience will normalize by —R to obtain

lourx (B) = Z for <0,0,..0> <bs< <1,1,.1>



Current Steering DAC Statistical Characterization
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for <0,0,...0> <sbs <1,1,..1>
or equivalently for 0 <k, < N-1



Current Steering DAC Statistical Characterization
Binary Weighted
Assume bundled current sources are comprised of H@; @ ¢
unary current sources from same distribution
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Substituting the values for I, it can be shown that the nominal parts
cancel thus
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Current Steering DAC Statistical Characterization

Binary Weighted
This can be expressed as = @ @ @ @
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This is now a sum of uncorrelated random variables, thus

This reduces to
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Current Steering DAC Statistical Characterization
Binary Weighted

It can be shown that the maximum INL, occurs at

b=<011....11111> or b=<100....0000> b0 @@@i

o U=l =l
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Substituting b=<1000....000>
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Current Steering DAC Statistical Characterization
Binary Weighted
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Note this is the same result as obtained for the unary DAC

But closed form expressions do not exist for the INL of this DAC since the
INL is an order statistic

. . O
Still need to obtain RG
ILSBX




Current Steering DAC Statistical Characterization
Unary Weighted and Binary Weighted

GINLMAX — GINLb=<1,o,...o> — 70 Irg AL L E&“iv
I .

Note this is the same result as obLtSéBi(ned for the unary DAC

Since INL is the max |INK,| is INLy.x the same as INL? No!

Since PN, is about the same for the Unary weighted structure and
the Binary weighted structure, is the performance of both about the

?
Same: No, DNL is much different !



Current Steering DAC Statistical Characterization
Unary Weighted and Binary Weighted
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Note this is the same result as obLtSéBi(ned for the unary DAC

o El'j—FﬁHl }o El'j_%,{;l

Instead of bundling unary current sources, could we simply take multiple
outputs on a current mirror to generate the binary weighted currents ?
This could be done in such a way that the area increases linearly rather
than geometrically with the number of bits — much like with an R-2R DAC

Voo

Yes — but!
JN

] (o) =—0 ]
Wil ~"wsc™ 2 7= also hold if we do not bundle unary current
sources to obtain the binary current sources?

No, o will be much different !



Statistical Modeling of Current Sources

o
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Simple Square-Law MOSFET Model Usually Adequate for static Statistical
Modeling

Assumption: Layout used to marginalize gradient effects, contact
resistance and drain/source resistance neglected

C..W
|, =H 2OE (Vs Vi )

Random Variables: {u, Cox, V1, W, L} Thus I, is a random variable

| . Oy
From previous analysis, need: 2

IDN



Statistical Modeling of Current Sources

Jlo
C. W
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Random Variables: {u, Cqox, Vg, W, L} Thus |, is a random variable

Will assume {y, Coy, V14, W, L } are uncorrelated
This is not true : Ty is @ random variable that affects both V;,, and Cyy

This assumption is widely used and popularized by Pelgrom

It is also implicit in the statistical model available in simulators such as SPECTRE
Statistical information about T,y often not available

Drenen and McAndrew (NXP) published several papers that point out limitations
Would be better to model physical parameters rather than model parameters but
more complicated

Statistical analysis tools at NXP probably have this right but not widely available
Assumption simplifies analysis considerably

Error from neglecting correlation is usually quite small but don’t know how small



Statistical Modeling of Current Sources

Model parameters are position dependent
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Statistical Modeling of Current Sources

Model parameters are position dependent

MCoW
2L

=

Assume that model parameters can be modeled as a
position-weighted integral
Ip(x,y)dxdy

_A
" A
_[COX (x,y)dxdy

A
IVTH (%, y)dxdy
_ A

V
™= A

Reasonably good assumption if current density is constant

(VGS -Viy )2 L
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Statistical Modeling of Current Sources

Assume that model parameters can be modeled as a position-weighted integral

As seen for resistors, this model is not good if current density is not constant

uC, W 2
[T) |, = %(VGS - VTH1)
J.VTH (X, Y)dXdy
V —_ A ~ _ TH1 + VTH2
- THEQ A 2
W £¢ W
L
VTH1 T VTH2 |f VTH1 = 1 V, VTH2=2V

Note dramatically different current densities

But reasonably good assumption if current density is constant



Statistical Modeling of Current Sources

C W
|D=LI 20|)_( (VGS_VTH)z

Model parameters characterized by following equations

M=HyTHr
Viu = Vo + Vg

COX = COXN + COXR
L=L,+L,
W=W, +W,

Neglecting random part of W and L which are usually less important

My + M5 )(Chyy +C W
ID=( a R)( ;iN OXR) (VGS'VTHN'VTHR)2




Statistical Modeling of Current Sources

My + M )(Chyn +C W
( N R ) ( ;)IiN OXR ) (VGS -VTHN -VTHR )2

This appears to be a highly nonlinear function of random variables !!

Will now linearize the relationship between |5 and the random variables

Since the random variables are small, we can do a Taylor’s series expansion
and truncate after first-order terms to obtain
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(VGS _VTHN )2 + Mr (VGS _VTHN )

This is a linearization of I in the random variables g, Coxr, and Vg

CoxnW My W

2 2 My C oy W
IDR = Mg oL (VGS'VTHN) +COXR T(VGS-VTHN) _VTHR A —oxl

(VGS -VTHN )

Cop W 2 W 2 U, C o W
| o (VGS _VTHN ) = (VGS _VTHN ) = (VGS _VTHN )
bR ~ 2L +C.. 2L _V L

M OXR THR

IDN IDN IDN

Could easily include Lg and Wy, but usually not important unless lots of perimeter



Statistical Modeling of Current Sources

ConW 2 W 2 My Con W
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IDR ~ Mr +COXR _ 2VTHR
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Thus

Ion Mn Coxn Viun Ion

2 2
V, 2
o, = o’ +oi +4 It o or o, = |02 +0i + o
br MR OXR V.. -V THR br Hr OXR V.. -V
Gs ~ YTHN Uy Coxn Gs — YTHN

2
ViR



Statistical Modeling of Current Sources

2 2
V 2 2 2 2
o, =0’ +ol +4| —T_ | 52 or o, =0, +tos + oy,
Ibr Hr Coxr V.. -V Vg brR Hr OXR V.. -V THR
Gs — VTHN ™ GS ~— VTHN

Ion My Coxn Vihn Ion Coxn

It will be assumed that 52 = Lu
(will discuss assumption later) = WL

Com WL process parameters

Define

1 4 : :
Thus o, = W\/AZ +— A2 Often only A; is available



Statistical Modeling of Current Sources

1 4
S /L S|
O'|D7R /,EWL\/ B VEQB VTO

IDN

Gate area: A=WL

- Standard deviation decreases with /a

» Large Vg reduces standard deviation

» Operating near cutoff results in large mismatch

» Often threshold voltage variations dominate mismatch
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Stay Safe and Stay Healthy !
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